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Anatomy of a meltwater drainage system beneath
the ancestral East Antarctic ice sheet
Lauren M. Simkins1*, John B. Anderson1, Sarah L. Greenwood2, Helge M. Gonnermann1,
Lindsay O. Prothro1, Anna RuthW. Halberstadt1,3, Leigh A. Stearns4, David Pollard5

and Robert M. DeConto3

Subglacial hydrology is critical to understand the behaviour of ice sheets, yet active meltwater drainage beneath contemporary
ice sheets is rarely accessible to direct observation. Using geophysical and sedimentological data from the deglaciated western
Ross Sea, we identify a palaeo-subglacial hydrological system active beneath an area formerly covered by the East Antarctic
ice sheet. A long channel network repeatedly delivered meltwater to an ice stream grounding line and was a persistent
pathway for episodic meltwater drainage events. Embayments within grounding-line landforms coincide with the location
of subglacial channels, marking reduced sedimentation and restricted landform growth. Consequently, channelized drainage
at the grounding line influenced the degree to which these landforms could provide stability feedbacks to the ice stream.
The channel network was connected to upstream subglacial lakes in an area of geologically recent rifting and volcanism,
where elevated heat flux would have produced su�cient basal melting to fill the lakes over decades to several centuries; this
timescale is consistent with our estimates of the frequency of drainage events at the retreating grounding line. Based on these
data, we hypothesize that ice stream dynamics in this region were sensitive to the underlying hydrological system.

Subglacial processes influence the behaviour of ice sheets and
their grounding lines, themost downstream location ice sheets
are in contact with the underlying bed. In particular, meltwa-

ter beneath ice sheets is associated with the onset of fast-flowing
ice streams1, shear margins that separate fast from slow ice flow2,
and enhanced deformation of subglacial sediments3,4. Meltwater
stored within subglacial lakes5–7 can drain over periods of months
to several years8–11 due to changes in hydraulic gradient that are
probably triggered by ice thinning and grounding-line retreat10,11.
Downstream of draining subglacial lakes, periods of fluctuating
and accelerated ice flow have been interpreted to result from dis-
tributed water flow10,12–14. In contrast, decelerated ice flow has been
attributed to lowered basal water pressures, as a consequence of
channelized meltwater drainage15–17. The distribution and move-
ment of subglacial meltwater, therefore, must be well understood to
assess changes in ice flow, yet models and theory have outpaced our
knowledge of subglacial hydrology based on direct observations.

A key question regards the influence of subglacial meltwater
drainage on grounding-line dynamics. The termination of a
subglacial channel beneath the contemporary Whillans Ice Stream
(Fig. 1a) coincides with a grounding-line embayment, where the
grounding line is located several kilometres further inland from the
adjacent grounding line and sediment erosion within the channel
and water mixing may alter grounding-line behaviour18,19. Whether
a causal relationship exists between channelized drainage and
grounding-line embayments is unclear; however, the possibility
that channelized drainage influences grounding-line position and
sediment accumulation, which can reduce the ice thickness needed
to remain in contact with the bed and even facilitate ice advance20,21,
should be explored. Furthermore, subglacial channels draining at

the grounding line can release buoyant meltwater plumes that
thermally erode channels into the base of ice shelves22,23. One
such example suggests basal melt rates of >15myr−1 within
an actively forming ice shelf channel that is connected to a
hypothesized subglacial channel at the grounding line24. Although
these observations demonstrate that subglacial channels drain at
grounding lines and can cause ice shelf melting, their impact on
grounding-line dynamics remains tenuous.

The geologic record can provide broader spatial and temporal
perspectives on subglacial hydrology. Numerous palaeo-subglacial
channels incised into bedrock are exposed on the Antarctic
continental shelf25–29 (Fig. 1a), but the timing of their incision and
meltwater occupation is not well constrained. Surficial sediment-
based subglacial channels on the Antarctic continental shelf are
temporally constrained30,31, yet they have not thus far been linked
to former grounding lines. Using geophysical and sedimentological
data, we provide the first evidence of a subglacial hydrological
system that was active during the post-Last Glacial Maximum
(LGM) deglaciation and connected explicitly to grounding-line
positions of a former ice stream in the western Ross Sea (Fig. 1a).

Channelized drainage at palaeo-grounding-line positions
Multibeam bathymetry data with sub-metre vertical resolution
reveal a subglacial hydrological system that spans over 200 km
in distance, with cross-cutting relationships between glacial land-
forms that record post-LGM ice flow and retreat of an ice stream
sourced from the East Antarctic ice sheet (EAIS) (Fig. 1b). For a
regional-scale reconstruction of ice flow and retreat in the Ross Sea,
readers are referred to ref. 32. Grounding-line landforms, includ-
ing recessional moraines and grounding-zone wedges, represent
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Figure 1 | Western Ross Sea bathymetry and landforms. a, Bathymetry
from ref. 49. Ice surface elevation from ref. 50. Inset shows Mertz Trough
(blue circle), Whillans (green circle) and MacAyeal (purple circle) ice
streams, Pine Island Glacier (orange circle), and palaeo-subglacial channels
on the continental shelf. ASE, Amundsen Sea Embayment; MB, Marguerite
Bay; PD, Palmer Deep. b, Overview of the mapped subglacial hydrological
system. c, Schematic of the grounding-line environment and landforms.
Moraines formed at times 1–3, followed by retreat to new positions at
times 4–6 marked by grounding-zone wedges (GZWs). Channelized
drainage bisected a moraine at time 2 and produced embayments at times
4 and 6.

periods of grounding-line position stability on the continental shelf
(Fig. 1c). Recessional moraines have symmetric geometries and
form by sediment deformation and/or deposition at grounding
lines33,34. Grounding-zone wedges form by sediment delivery from
the subglacial environment to marine-based grounding lines and
are characterized by asymmetric geometries that result from topset
aggradation and foreset progradation20,33,35,36. Across the subglacial

hydrological system, recessional moraines range in amplitude from
0.5–5m and grounding-zone wedges are 2–20m in amplitude
(Fig. 1c). We separate the hydrological system into three segments
for the purposes of discussion (Fig. 1b): the downstream segment
in southern Joides Trough (Fig. 2), the middle segment south of
Crary Bank (Fig. 3), and the upstream segment containing a series
of subglacial lakes (Fig. 4).

The downstream segment contains a long primary channel,
several smaller channels, and a suite of grounding-line landforms
(Fig. 2a). The primary channel is locally buried by recessional
moraines, which indicates that it initially formed as a subglacial
channel prior to southward grounding-line retreat across the area
(Fig. 2b). A core collected at the channel base (KC28; Fig. 2a)
supports channel incision into till deposited during or following the
LGM. The channel bisects several recessional moraines (Fig. 2c),
implying meltwater discharge events either caused local incision or
restricted the growth of the moraines when the grounding line was
positioned at those locations.

Following southward retreat from the positions of the moraines,
the grounding line is expressed as a composite grounding-zone
wedge (GZW1; 20m in amplitude) comprised of two stacked
grounding-zone wedges with multiple embayments∼1–7 km wide
along the topset–foreset break (Fig. 2a). The embayments indicate
variability in grounding-line processes that resulted in a sinuous
grounding line, in contrast to the earlier formed linear recessional
moraines that predominantly overprint the channel to the north.
Channels emanate from each embayment, while a 2.5-m-deep sub-
glacial channel occurs on the topset of GZW1 (Fig. 2c,d). The depth
of channel incision on the topset of GZW1 is far less than the thick-
ness of till (20m) that composes the grounding-zone wedge and
leads us to suggest that this channel segment was incised either dur-
ing or following the active growth of GZW1. However, local burial
of the channel by till indicates grounding-zone wedge construction
was not complete when the channel was active because sediments
were later mobilized across segments of the channel (Fig. 2c).

The coincident occurrence of channels and embayments, and the
connection of the topset channel to the larger embayment, implies
that the embayments were locations of channelized drainage at the
grounding line, comparable in scale to the contemporary Whillans
grounding-line embayment18 and perhaps similar to embayments
(termed ‘breach point’ and ‘indentation’) within grounding-zone
wedges in Mertz Trough37. The preservation of older recessional
moraines at the base of the larger embayment is evidence that the
embayments formed by restricted sediment deposition, not erosion,
at the grounding line. Contrastingly, we observe grounding-zone
wedge lobes that prograded over moraines where channels do
not occur (Fig. 2c), indicating ice advance was facilitated during
the northward expansion of the grounding-zone wedge. Thus,
embayments mark sites where local ice stability, usually enhanced
by grounding-zone wedge construction, was reduced, contributing
to spatial variability in grounding-line sensitivity to flotation.
Instability could have been further enhanced by melting of ice
seaward of the grounding line by buoyant meltwater plumes. The
apparent bisection of several recessional moraines to the north of
GZW1 (Fig. 2c) may be similar, but smaller scale, embayments.
Additionally, the superposition of embayments and previously
formed subglacial channels indicate preferential drainage pathways
spanning prolonged periods of grounding-line recession and
landform growth.

After ice decoupled from GZW1, the grounding line retreated
southwards to another composite grounding-zone wedge (GZW2)
with two more grounding-line embayments (Fig. 2a). The
grounding line then retreated 25 km to the south, where the retreat
direction shifted from south to west across the middle segment of
the subglacial hydrological system (Figs 1b and 3a). A suite of reces-
sionalmoraines and small (<10m in amplitude) lineated grounding
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Figure 3 | Middle hydrological segment. a, A single channel is locally buried by recessional moraines and subglacial lineations (location in Fig. 1b).
Upstream of the channel to the northwest, smooth areas of the seafloor lack expressions of grounded ice, interpreted as subglacial lakes that delivered
meltwater to the channel network through basement relief lows. b, Grounding-zone wedges (GZWs) were bisected by the channel as the grounding-line
retreated to the west, some of which display small embayments. c, Profile across the channel (location in b).
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Figure 4 | Subglacial lakes in upstream segment. a, Grounding-line
landforms surround basins interpreted as subglacial lakes (location in
Fig. 1b). b, Same as a, but showing identified subglacial lakes (volume
capacities in km3). White arrows show lows in basement relief through
which the lakes probably drained. Dashed line denotes the area
(1,300 km2) used to estimate local meltwater production. c, Acoustic
profile y–y′ across a small basin shows a strong basal reflection, two
laminated units, and an acoustically transparent unit (location in a).
d, Interpreted acoustic profile shown in c. e, Profile z–z′ across the lakes
(location in a). Basement highs labelled 1–3.

zone wedges record westward grounding-line retreat, roughly
perpendicular to the channel (Fig. 3a). Recessional moraines and
subglacial lineations locally overprint the channel (Fig. 3a), which
must therefore have been inactive while sediment was mobilized
across the channel. In contrast, the channel bisects—or facilitated
embayments within—grounding-zone wedges north of the volcanic
seamounts (Fig. 3b,c). These variable relationships between the
channel and other landforms again indicate episodic meltwater
drainage via the channel network during grounding-line retreat.

The spatial association of subglacial channels and former
grounding-line positions indicates that the channel network as
a whole was a persistent feature during numerous retreat events
and periods of ice flow reorganization. Grounding-line landforms
that both overprint and were bisected by the channel are oriented
perpendicular to the channel, while subglacial lineations are broadly

parallel to it. This indicates that ice flow direction and the trajectory
of the retreating grounding line maintained a distinct relationship
to the established channel network (Fig. 1b), and perhaps indicates
sensitivity of ice flow pathways to channelized subglacial drainage,
yet we cannot constrain a mechanism for this relationship based on
our observations.

Frequency and nature of channelized discharge events
Channelized drainage was predominantly active where grounding-
line positions are expressed by grounding-zone wedges and
largely dormant during the formation of recessional moraines
(Figs 2 and 3). This implies that the frequency of meltwater dis-
charge events typically exceeded the duration of recessionalmoraine
formation and, at most, corresponded to the timing of grounding-
zone wedge formation. Grounding-zone wedges several tens to hun-
dreds of metres in amplitude form over centuries to millennia36,38.
However, using the largest grounding-zone wedge in our study area
(GZW1; Figs 1c and 2a,b) and a range of sediment fluxes (Methods),
the maximum construction time ranges between 80 and 500 years.
Smaller grounding-line landforms bisected by the channel probably
formed over years to decades, but we conservatively estimate the
frequency of discharge events to decades to several centuries.

We use the smallest channel geometry (Fig. 2d) to provide
an estimate of palaeo-meltwater flow conditions, based on a
hydropotential surface obtained from palaeo-ice surface and bed
elevations (Methods and Supplementary Fig. 1). Calculated bank-
full flow velocity is about 1m s−1 with a discharge of 150m3 s−1.
Given uncertainties in assumptions and modelled parameters
to calculate flow properties, these should be treated only as
order-of-magnitude estimates. However, the calculated discharge
is comparable to peak discharges from contemporary Antarctic
subglacial lake drainage events9,13,39 and meltwater outflow at the
Siple Coast grounding line40.

Sedimentological data help us further characterize the nature
of drainage at palaeo-grounding-line positions. Relatively sorted,
terrigenous fine silts with little to no biogenic material or ice-
rafted debris (Supplementary Fig. 2a–c) occur as discrete units
and laminations in sediment cores across the western Ross Sea
(Fig. 1a and Supplementary Table 1). Given a shared 10 µm grain-
size mode, these deposits were sourced directly from subglacial
till (Supplementary Fig. 2d–f). We interpret these as meltwater
deposits that were transported by subglacial channels to the
grounding line and then dispersed in the ocean before settling to
the seafloor. Interestingly, the deposits are identical to meltwater
‘plumite’ deposits in the Amundsen Sea41 (Supplementary Fig. 2a)
and those described beneath the contemporary Pine Island Glacier
ice shelf42. In the western Ross Sea, the deposits are confined
to proximal grounding line and open marine units, supporting
sediment deposition from buoyantmeltwater plumes expelled at the
grounding line. It is likely that these plumes contributed to melting
of ice at the grounding line and to erosion of the ice shelf base.

Upstream subglacial lakes
Within the upstream segment of the subglacial hydrological system
(Fig. 1b), we identify a series of subglacial lakes that were dammed
by grounded ice (Fig. 4a,b) when the middle and downstream
segments of the hydrological system were active. An acoustic profile
from this area shows laminated deposits that fill a small basin,
stratigraphically bounded by basement rocks and post-LGM open
marine deposits and filled with subglacial lake deposits (Fig. 4c,d).
Grounding-line landforms surround the basins, but are absent
within the basins themselves (Figs 3a and 4a), and indicate another
major shift in retreat direction from east to west across the channel
to south to north across the subglacial lakes (Figs 1b and 3a).
This shows that the grounding-line retreat continued to follow the
established subglacial hydrological system.

694

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE GEOSCIENCE | VOL 10 | SEPTEMBER 2017 | www.nature.com/naturegeoscience

http://dx.doi.org/10.1038/ngeo3012
www.nature.com/naturegeoscience


NATURE GEOSCIENCE DOI: 10.1038/NGEO3012 ARTICLES
a

Drainage frequency inferred
from grounding-line landforms

SLW48

0 2 4 6 8 10 12 14 16 18 20
0

200

400

600

800
10,000 km3 catchment1,300 km3 lake area

La
ke

 fi
ll 

tim
e 

(y
r)

Basal melt rate (mm yr−1)

Geothermal heat (mW m−2)

0 100 200 300 400 500 600

Geothermal heat (mW m−2)

0 100 200 300 400 500 600

Ic
e 

th
ic

kn
es

s,
 H

 (m
)

Ic
e 

th
ic

kn
es

s,
 H

 (m
)

500

700

900

1,100

1,300

1,500
Melt rate = 0.5 mm yr−1 Melt rate = 3 mm yr−1

us = 100 m yr−1, αs = −0.0001, bn = 100 mm yr−1

us = 100 m yr−1, αs = −0.0001, bn = 300 mm yr−1

us = 100 m yr−1, αs = −0.0005, bn = 100 mm yr−1

us = 100 m yr−1, αs = −0.0005, bn = 300 mm yr−1

us = 1,000 m yr−1, αs = −0.0001, bn = 100 mm yr−1

us = 1,000 m yr−1, αs = −0.0001, bn = 300 mm yr−1

us = 1,000 m yr−1, αs = −0.0005, bn = 100 mm yr−1

us = 1,000 m yr−1, αs = −0.0005, bn = 300 mm yr−1

SLW48 SLW48

500

700

900

1,100

1,300

1,500b c
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The individual lakes have depths of 4–20m and volume
capacities of 0.002–0.8 km3 (Fig. 4b); the combined volume capacity
is approximately 2 km3. Althoughprominent basement highs appear
to separate some of the lakes (Fig. 4e), meltwater probably flowed
from upstream to downstream subglacial lakes via hydropotential
lows and depressions in basement relief (Fig. 4b). This is supported
by the presence of meltwater fan deposits on the slope of a basement
high at the upstream end of a subglacial lake (Fig. 4a,b), indicating
north to south meltwater flow. We suggest that the lakes ultimately
drained into the channel system along the southern sill of the largest
lake (Figs 3a and 4a,b). If the lakes completely and simultaneously
drained, individual channelized drainage events would have lasted
about half a year with our calculated channel discharge, or shorter
if the lakes did not drain completely or simultaneously.

To what extent the lakes were fed by upstream sources is un-
clear, as there are no observed channels upstream of the lakes,
and distributed drainage is difficult to identify in the geologic
record. Distributed sources account for >90% of meltwater stored
within contemporary subglacial lakes of the MacAyeal Ice Stream43

(Fig. 1a). However, it is likely that the drainage catchment for the
western Ross Sea lakes was small (<10,000 km2), since the lakes are
perched on the flank of a bank that was a sustained hydropotential
high while ice was grounded in this area (Supplementary Fig. 1).
If we assume melt across the whole catchment reached and filled
these lakes through a distributed drainage system, basal melt rates
of >0.5mmyr−1 would be sufficient to produce a lake fill time
consistent with the drainage event frequency of at most several
centuries inferred from grounding-line landforms (Fig. 5a). Con-
sidering the potential absence of significant upstream distributed

meltwater sources, an in situ basal melt rate of >3mmyr−1 over
the area of the subglacial lakes (1,300 km2; see Fig. 4b) would also
produce lake filling on the same timescale (Fig. 5a).

Such rates, under reasonable ice sheet conditions (ice flow
velocity, surface slope, accumulation), demand aminimumgeother-
mal heat flux of 90–120mWm−2 (Fig. 5b,c and Supplementary
Methods). The subglacial hydrological system is in a region of late
Cenozoic rifting44 and proximal to Quaternary volcanic islands and
seamounts45 (Fig. 1a–b), where measurements of geothermal heat
fluxes span from∼60–165mWm−2 (refs 46,47). Along the same rift
zone, a heat flux of 285± 80mWm−2 was measured at the base of
Subglacial Lake Whillans, near the Whillans Ice Stream grounding
line (Fig. 1a), with a basal melt rate of ∼18mmyr−1 (ref. 48).
This melt rate is considerably higher than rates required to fill the
western Ross Sea lakes. Therefore, we suggest that elevated, but
geologically feasible, geothermal heat fluxes could have produced
sufficient basal melting either across the ice stream catchment or
confined to the area of the subglacial lakes over periods of decades
to several centuries.

Conclusions
An extensive sediment-based subglacial channel network was reac-
tivated numerous times during the post-LGM deglaciation of the
western Ross Sea. Channelizedmeltwater drainage locally restricted
grounding-line landform growth and, consequently, contributed
to local grounding-line instability. Channel segments both bisect
and are buried by grounding-line landforms, suggesting meltwater
drainage events occurred episodically, and at periodicities of tens to
several hundreds of years. The channel networkwas fed by upstream
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subglacial lakes in an area of geologically recent rifting, active
volcanism, and elevated geothermal heat flow. Meltwater drainage
configuration appears to have persisted through various phases of
grounding-line retreat, shifts in ice flow direction, and a circuitous
retreat pattern, suggesting that the stable location of source lakes and
ample production of basal melting exerted a degree of influence on
the retreating ice stream.The probable recurrence of drainage events
during grounding-line landform construction suggests that an indi-
vidual drainage event is not capable of dislodging a stable grounding
line. It does, however, remain a possibility that repeated drainage
through embayments, the development of pronounced grounding-
line sinuosity and feedbacks with plume-driven ice melting, may
undermine grounding-line stability.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Bathymetry and acoustic stratigraphy.Multibeam bathymetry was collected on
cruise NBP1502A aboard the RVIB Nathaniel B. Palmer using a Kongsberg
EM-122 system in dual swath mode with a 1◦×1◦ array and 12 kHz frequency.
Vertical resolution varies from 0.07 to 0.2% of the water depth51 and horizontal
resolution is approximately 0.02% the water depth. Data are gridded at 20m.
Sub-bottom acoustic data were collected with a Knudsen CHIRP 3260 system
during cruise NBP1502A using a frequency of 3.5 kHz and a 0.25ms pulse width.
Two-way travel time was converted to depth using a velocity of 1,500m s−1.

Grounding-zone wedge formation time. The sediment volume of GZW 1 (Fig. 2a)
of 3× 109 m3 or 9× 104 m3 m−1 (metre width) is based on landform area and
thickness, measured from multibeam bathymetry and acoustic profiles. Two-way
travel times through sediment were converted to depth using an acoustic velocity
bracketed by 1,500–1,750m s−1 (refs 52–54). A lower grounding-line sediment flux
of 200m3 yr−1 m−1 (metre width) is based on refs 4,38,55 and a higher flux of
1,000m3 m−1 yr−1 is from ref. 51.

Meltwater channel flow calculations.Meltwater flow velocity and discharge were
calculated following refs 56,57 and using the smallest measured channel
dimensions (Fig. 2d). Hydraulic potential across the channels is based on
isostasy-corrected bed and ice surface elevations from an ice sheet model for a
model time slice at 20,000 years ago, representative of the LGM ice sheet
configuration (Supplementary Fig. 1). Because the ice sheet model timing is poorly
constrained during the deglaciation of the continental shelf, we chose to use the
best observationally constrained model time slice (at 20,000 years ago) to estimate
hydropotential and, thus, channel flow properties that we advise readers to treat as
order-of-magnitude estimates. We did, however, evaluate hydropotential surfaces
using model outputs from deglacial time slices, and the hydropotential high on
Crary Bank remains and hydropotential across the channel increases, which would
lead to higher channel flow discharge yet still within the same order of magnitude.
Stream bed roughness was estimated with a dimensionless friction
parameterization f for turbulent pipe flow58 by using equations (1) and (2) to
simultaneously solve for f and u (depth-averaged flow velocity).

f =
8Φh
ρwu2

(1)

f −0.5=−1.8 log10

[( R
3.7

)1.11

+
6.9

ρwuh/v

]
(2)

whereΦ is hydraulic potential gradient, h is the channel depth, ρw is the density of
fresh water, v is kinematic viscosity of water, and R is relative roughness

R=
D90

h
(3)

in which grain-size diameter at 90% of the distribution (D90; 1.39× 10−4 m) was
used as an estimate for equivalent roughness, based on grain-size measurements
from Ross Sea till matrix material (Supplementary Fig. 2d). Although till contains
larger clasts (for example, granules and pebbles), we assume the abundant
fine-grained matrix is more representative for calculating relative roughness at the
base of the channel. A value of 0.097 was used for f, which is similar to the
commonly applied value of 0.1 (refs 56,57). Discharge was calculated from the
resulting flow velocity and a triangular channel cross-sectional area, assuming
bank-full conditions and a flat ice base. Lateral variations in meltwater flow
velocity due to the channel banks were not considered, as the channels are much
wider than deep, and lateral effects are assumed to be minimal.

Ice sheet model. The ice sheet model is described by refs 59–61. It uses hybrid ice
dynamical equations with parameterized flux at the grounding line, allowing the

realistic simulation of floating ice shelves, ice streams and grounding-line
migration in long-term runs. Elevation surfaces are corrected for glacial isostatic
adjustment. The simulation used here is from an intermediate model version,
similar to that in ref. 60, with the addition of sub-ice ocean melting
parameterization depending on proximal 400m ocean temperatures61, which in
this run were obtained from archived output of the coupled-GCM experiment of
ref. 62. The model was run transiently from 50,000 years ago to the present, on a
20 km grid that spans all of Antarctica.

Sedimentological properties. Sediment samples were sieved prior to measurement
with a 500-µm sieve and grain sizes were measured with a Malvern 2000 grain-size
analyser. The till measurements do not include the coarser grains (granules and
pebbles) and represent the matrix grain size. Core details and sample depths are
summarized in Supplementary Table 1.

Heat flow model. The conditions required for basal melting were assessed for a
range of parameters using a one-dimensional model similar to that of ref. 63.
Further details are in the Supplementary Methods.

Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its Supplementary Information file.
Multibeam bathymetry data used in this study collected aboard cruise NBP1502A
are available in an XYZ format from the corresponding author upon request.
Sediment samples from cores used in the study are available by request from the
Antarctic Core Collection at the Oregon State University Marine and Geology
Repository. Raw sedimentological data is available from the corresponding author
upon request.
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