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[1] The transfer of volatiles from the Earth’s interior to the atmosphere occurs through degassing of
magma, the dynamics of which assert a significant control on volcanic eruptions. The first and most
critical step in degassing is the nucleation of gas bubbles, which requires that a sufficient number of
volatile molecules cluster together to overcome the free energy associated with the formation of a new
interface between nucleus and surrounding melt. This free energy is a function of surface tension,
typically assumed to equate to the macroscopically measurable value. Surface tension estimates inferred
from bubble nucleation experiments in silicate melts are, however, lower than direct macroscopic
measurements, making it difficult to accurately predict magma ascent and decompression rates from
measured bubble number densities in pyroclasts. We provide a potential resolution to this problem
through an integrated study of bubble nucleation experiments and modeling thereof, based on
nonclassical nucleation theory. We find that surface tension between critical bubble nuclei and the
surrounding melt depends on the degree of supersaturation and is lower than the macroscopically
measured value. This is consistent with the view that far from equilibrium the interface between a
nucleus and surrounding metastable bulk phase is diffuse instead of sharp. As a consequence, the increase
in nucleation rate with supersaturation is significantly larger at high supersaturations than predicted by
classical nucleation theory.
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1. Introduction

[2] Volcanism is the principal mechanism by
which volatiles are transferred from the Earth’s in-
terior to its surface. The underlying process is
magma degassing, a consequence of pressure-
dependent solubilities of volatiles, such as H2O
and CO2, in silicate melts. As magma rises toward
the surface, and pressure decreases, the melt
becomes supersaturated in volatiles. As a result,
volatile-bearing bubbles nucleate and grow
[Toramaru, 1989, 1995; Gonnermann and Manga,
2007], with the rates of bubble nucleation and
growth largely determining the style by which the
magma erupts [Gonnermann and Manga, 2007;
Houghton and Gonnermann, 2008].

[3] As bubbles nucleate, the distance between
individual bubbles, and hence the characteristic
diffusion time of volatiles, decrease. Conse-
quently, continuous bubble nucleation during
magma ascent will eventually cause the diffusion
of volatiles to be sufficiently fast to decrease
supersaturation, despite further magma decom-
pression. Magma decompression and bubble
nucleation are thus competing processes that cause
and inhibit supersaturation, respectively [Tora-
maru, 1989, 1995, 2006]. It is therefore possible to
constrain magma ascent and decompression rates
from the number of bubbles that nucleated in a
given volume of melt upon eruptive magma
ascent. To this end, a substantial body of research
has been aimed at characterizing the size and
abundance of bubbles (vesicles) in pyroclasts
[e.g., Sparks and Brazier, 1982; Toramaru, 1989,
1990; Mangan et al., 1993; Klug and Cashman,
1994; Gardner et al., 1996; Klug and Cashman,
1996; Mangan and Cashman, 1996; Blower et al.,
2001; Polacci et al., 2001; Blower et al., 2002;
Klug et al., 2002; Polacci et al., 2003; Gaonac’h
et al., 1996a, 1996b, 2005; Polacci, 2005; Polacci
et al., 2006, 2009; Gurioli et al., 2005; Adams
et al., 2006; Lautze and Houghton, 2007; Piochi
et al., 2008; Giachetti et al., 2010; Houghton
et al., 2010; Alfano et al., 2012].

[4] Bubble nucleation in magmas can be homoge-
neous, heterogeneous, or a combination of both
[e.g., Hurwitz and Navon, 1994; Mourtada-
Bonnefoi and Laporte, 1999; Mangan and Sisson,
2000; Mourtada-Bonnefoi and Laporte, 2002;
Gardner and Denis, 2004; Mourtada-Bonnefoi
and Laporte, 2004; Mangan and Sisson, 2005;
Gardner, 2007; Cluzel et al., 2008; Larsen, 2008;
Hamada et al., 2010; Gardner and Ketcham,
2011; Gonde et al., 2011]. In the case of heteroge-
neous nucleation, the abundant presence of impur-
ities, such as crystals, provide nucleation

substrates of lower interfacial energy. In some
cases, however, the number density of bubbles in
pyroclasts far exceeds the abundance of crystals
which could act as nucleation substrates, suggest-
ing that bubbles may have nucleated within the
bulk metastable melt phase through homogeneous
nucleation [e.g., Debenedetti, 1996]. Because the
moments of the bubble size distribution, which are
used to infer eruption dynamics, are a function of
the nucleation rate [e.g., Toramaru, 1995], the
ability to predict bubble nucleation rates is of
essence to the study of volcanic eruptions. In this
study, we solely focus on homogeneous bubble
nucleation, because it constitutes the most funda-
mental bubble nucleation process and, thus, the
basis for understanding bubble nucleation in
magmas.

[5] Bubble nucleation is a consequence of random
fluctuations in the spatial distribution of molecules
of dissolved volatiles within the melt, resulting in
the spontaneous formation of small molecular clus-
ters. The rate of cluster formation increases with
the supersaturation of volatiles that are dissolved
within the melt phase. Supersaturation, in turn, is a
consequence of magma decompression at faster
rates than the rate at which volatiles can diffuse
through the melt into bubbles, if they exist [e.g.,
Toramaru, 1989, 1995; Navon et al., 1998; Navon
and Lyakhovsky, 1998; Lensky et al., 2004; Tora-
maru, 2006; Gonnermann and Manga, 2007]. For a
given supersaturation, the free work associated with
cluster formation increases with cluster size and
reaches a maximum at a critical size, after which it
decreases. This critical cluster size strongly depends
on the change in energy associated with the forma-
tion of the vapor-melt interface. In other words, the
critical cluster size depends on surface tension, with
clusters larger than the critical size growing into
bubbles, whereas smaller ones will not. Because the
critical cluster size decreases with decreasing sur-
face tension, the probability of cluster formation,
that is the bubble nucleation rate, increases as sur-
face tension decreases. Thus, the surface tension
between the nucleating volatiles and the surround-
ing melt phase is of critical importance to bubble
nucleation, magma degassing, and the dynamics of
volcanic eruptions.

[6] The conventional theoretical framework within
which the nucleation rate of bubbles is predicted is
classical nucleation theory (CNT). It is based on
the approximations that there exists an equilibrium
distribution of nuclei and that these nuclei have
the properties of the bulk phase. These approxima-
tions allow nucleation to be treated within a
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thermodynamic framework, as opposed to a
kinetic one [Debenedetti, 1996]. It is thus assumed
that the surface tension between bubble nuclei and
surrounding melt is the same as the surface tension
that can be measured macroscopically. Close to
equilibrium, the work of formation of a critical nu-
cleus is in reasonable agreement with predictions
from CNT, in part because the surface tension of
the newly formed interface approaches that of a
flat interface [Kelton and Greer, 2010]. With
increasing departure from equilibrium, however,
the interface between the new and original phases
departs from capillarity (a sharp interface) and
becomes diffuse. In the spinodal limit, far from
equilibrium, surface tension and the work of for-
mation of the new phase vanish. Consequently, the
approximation of CNT that macroscopic proper-
ties of the bulk phase, and in particular surface
tension, can be used to predict nucleation rates is
strictly valid only close to equilibrium [Kelton and
Greer, 2010]. With increasing departure from
equilibrium this approximation no longer holds
and surface tension is no longer constant. Instead,
it may depend on the degree of departure from
equilibrium, that is on the degree of
supersaturation.

[7] One approach to studying bubble nucleation in
magmas is the controlled decompression of silicate
melt, which was equilibrated at some higher
pressure with a volatile phase, usually H2O [e.g.,
Hurwitz and Navon, 1994; Mourtada-Bonnefoi
and Laporte, 1999, 2002, 2004; Mangan and Sis-
son, 2000, 2005; Gardner and Denis, 2004; Gard-
ner, 2007; Larsen, 2008; Hamada et al., 2010;
Gonde et al., 2011; Nowak et al., 2011; Gardner
and Ketcham, 2011]. The resultant number of bub-
bles that nucleate within a volume of melt is then
measured and divided by the duration of the
experiment, typically of the order of 10–100 s, to
obtain an average nucleation rate. Using CNT, to-
gether with the known supersaturation and other
parameters, it is then possible to estimate the value
of surface tension. As already pointed out, for
example, by Hamada et al. [2010], typical values
of surface tension thus obtained are significantly
lower than those determined by direct measure-
ments [Bagdassarov et al., 2000]. At the same
time they are relatively high for producing the
high bubble number densities observed in pyro-
clasts at magma decompression rates typically
obtained from fluid dynamical modeling of magma
ascent [Toramaru, 2006].

[8] To address this problem, we performed and
modeled a suite of bubble nucleation experiments.

During the experiments all parameters were
known or controlled, except surface tension of the
nucleating bubble. We focused on a single rhyo-
litic melt, in order to eliminate compositional
dependencies, and on experiments within a narrow
range of temperatures (625!C), in order to limit
the effect of temperature [Walker and Mullins,
1981; Bagdassarov et al., 2000; Gardner and
Ketcham, 2011]. The only parameters that varied
significantly were dissolved H2O content and
decompression rate. From the modeling of our
experiments, we find that surface tension of the
nucleating bubble is strongly dependent on the
degree of supersaturation and is of lower value
than the macroscopically measurable surface ten-
sion. These results are consistent with the contem-
porary framework of nonclassical nucleation
theory.

[9] After a description of the experiments (section
2) we will, therefore, provide a discussion of non-
classical nucleation theory (section 3), as well as
of our modeling approach for nonclassical bubble
nucleation during the aforementioned experiments
(section 4). This will be followed by a presentation
of the results obtained from the modeling (section
5) and conclusions (section 6).

2. Bubble Nucleation Experiments

2.1. Samples and Experimental
Techniques

[10] All experiments used cylinders drilled from a
high-silica rhyolitic obsidian that consists of clear
rhyolitic glass and less than 1 vol.% microlites of
Fe-Ti oxides (Table 1). The composition of the
glasses was determined by electron microprobe
and, normalized to 100%, was in weight percent:
76.53% SiO2, 0.06% TiO2, 13.01% Al2O3, 0.79%
FeO, 0.08% MnO, 0.02% MgO, 0.74% CaO,
3.87% Na2O, and 4.91% K2O, with Fe reported as
FeO. Most cores were 2.2 mm in diameter and
1.1–1.3 cm long. All sharp edges were ground
with emery paper to avoid piercing the metal tub-
ing in which the cores were held during experi-
ments. The cylinders were washed after being
ground.

[11] Each experiment consisted of two steps: a
sample was first hydrated with a given amount of
water, and then decompressed to a lower pressure.
For both hydration and decompression the pres-
sure vessel was pressurized with water. For each
hydration, a cylinder and distilled water were
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added to a 4 mm O.D. Au capsule, which had been
welded at one end. Enough water, usually ca. 10%
by weight of the cylinder, was added to ensure that a
fluid existed throughout the hydration. Then, the cap-
sule was crimped, weighed, and welded shut. The
sealed capsule was then heated on a hotplate for 10–
15 min and weighed again to check for leaks. All
hydrations were carried out in externally heated,
cold-seal pressure vessels, made of a Nickel-based
alloy, and were run at 850!C, 875!C, or 900!C and
various pressures for 5 days (Table 1). The samples
were absolutely crystal free after this hydration step.

Gardner et al. [1999] showed that samples hydrated
at superliquidus conditions for 5 days result in homo-
geneous nucleation, whereas samples hydrated for 3
or less days resulted in heterogeneous nucleation, de-
spite the apparent absence of any crystals suitable as
bubble nucleation sites. We thus conclude that our
sample preparation resulted in experiments where
bubbles nucleated homogeneously within the bulk of
the melt.

[12] Pressure was measured to 60.1 MPa, and the
K-type thermocouples used have been found to be

Table 1. Experimental Conditions and Resultsa

Run Starting Material piniital (MPa) pfinal (MPa) T (!C) Time [H2O] (wt.%) Nm (m"3)

Hydration experiments
G-1079 Rhyolite 120 120 900 144 4.27 6 0.08 –
G-1088 Rhyolite 120 120 900 144 4.22 6 0.01 –
G-1095 Rhyolite 140 140 900 120 4.71 6 0.02 –
G-1096 Rhyolite 140 140 900 120 4.77 6 0.04 –
G-591# Rhyolite 160 160 875 120 5.01 6 0.18 –
G-594# Rhyolite 160 160 875 120 5.17 6 0.50 –
G-595# Rhyolite 160 160 875 120 4.93 6 0.13 –
G-610# Rhyolite 160 160 875 120 5.00 6 0.03 –
G-630# Rhyolite 160 160 875 120 4.81 6 0.14 –
G-644# Rhyolite 160 160 875 120 4.90 6 0.08 –
G-695# Rhyolite 160 160 875 120 4.95 6 0.05 –
G-876# Rhyolite 160 160 875 120 5.08 6 0.01 –
G-882# Rhyolite 160 160 875 120 5.03 6 0.01 –
G-883# Rhyolite 160 160 875 120 4.93 6 0.05 –
G-885# Rhyolite 160 160 875 120 5.00 6 0.01 –
G-931# Rhyolite 160 160 875 120 5.03 6 0.02 –
G-1121 Rhyolite 200 200 875 120 5.62 6 0.06 –
G-1140 Rhyolite 200 200 875 120 5.66 6 0.02 –
G-1147 Rhyolite 200 200 875 120 5.52 6 0.02 –
G-1231 Rhyolite 210 210 850 120 5.58 6 0.02 –
Decompression experiments
G-906# G-883 161 (146) 51.5 825 10/50 – 0
G-938# G-931 161 (151) 37 825 10/50 – 7.35 $ 108

G-890# G-882 161 (151) 22 825 10/50 – 2.26 $ 108

G-907# G-885 161 (150) 15 825 16/44 – 4.95 $ 108

G-889# G-876 161 (154) 8.5 825 10/50 – 7.84 $ 1010

G-1233 G-1231 211 24.5 850 14/46 – 4.4 $ 1013(#)

G-1234 G-1231 211 23.5 850 10/20 – 6.8 $ 1013 (#)

G-1089 G-1079 121 18 875 8/52 4.2360.03 0
G-1149 G-1088 121 10 875 22/38 – 0
G-1110 G-1095 141 46.5 875 20/40 – 0
G-1113 G-1096 141 43.5 875 5/55 – 0
G-1112 G-1096 141 34 875 12/48 – 3.12 $ 108

G-1111 G-1095 141 23 875 16/44 – 1.40 $ 109

G-660# G-630 161 80 875 5/55 – 0
G-593# G-591 161 65 875 3/57 – 0
G-724# G-695 161 52.5 875 10/50 – 2.5 $ 108

G-658# G-610 161 47 875 8/52 – 4.76 $ 108

G-604# G-594 161 33 875 20/40 – 2.91 $ 109

G-665# G-644 161 22.5 875 9/51 – 2.14 $ 109

G-608# G-595 161 13.5 875 11/109 – 3.21 $ 1010

G-1129 G-1121 201 100 875 17/43 – 0
G-1159 G-1147 201 85.5 875 10/48 – 0
G-1148 G-1140 201 74.5 875 35/25 – 5.93 $ 109

apinitial and pfinal are the initial and final pressures of the experiment; Times are either hours at hydration pressure, or number of seconds it took
to lower pressure to pfinal (61 s) and number of seconds the sample remained at pfinal ; [H2O] is total water content (61!) ; Nm is the number den-
sity of bubbles nucleated, determined by counting numbers of bubbles in given volumes of the sample, except (#) for which Nm was determined
from measured bubbles sizes and porosity (see text for discussion). Experiments indicated by # were also reported in Gardner and Ketcham
[2011].
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precise to 65!C. The use of a Ni filler rod in the
pressure vessel ensured that the sample hydrated
at an oxygen fugacity similar to the Ni-NiO oxy-
gen buffer [Gardner et al., 1995]. Samples were
quenched by removing the pressure vessel from
the furnace and, after blowing on the vessel with
compressed air until it stopped glowing red,
immersing it into a bucket of water. The hydrated
glass cylinder was then extracted from the capsule
and split ; one piece was used to measure dissolved
water contents by Fourier transform infrared spec-
troscopy (see below), the other in a decompression
experiment.

[13] Decompression experiments consisted of
hydrated cylinders inside Au capsules welded
shut. Each capsule was placed into a cup on the
end of an Inconel rod and inserted into an exter-
nally heated, cold-seal pressure vessel fitted with a
rapid-quench extension. The sample was held in
the water-cooled region of the vessel while the
pressure vessel heated to 825–875!C. Because the
pressurizing medium was water, the adiabatic tem-
perature drop during depressurization is smaller
than in experiments that are pressurized by com-
pressed gas [e.g., Hamada et al., 2010], with the
difference in temperature between initial hydration
and decompression corresponding in all cases to a
solubility difference of <0.1 wt.% [e.g., Liu et al.,
2005]. We thus expect a negligible effect on the
experimental results.

[14] Once the pressure vessel thermally equili-
brated, the sample rod was raised with a magnet to
insert the sample into the hot zone of the pressure
vessel. The pressure was quickly adjusted using a
hand-operated intensifier to 1 MPa above the
hydration pressure to discourage water loss from
the melt during heating. After the sample heated
for 5 min, pressure was released manually within
3–35 s to a lower final pressure (Table 1). After
samples reached their final pressures, most of
them were held at that pressure until a total of 60 s
had elapsed, including the time during which pres-
sure was decreased. Samples were then quenched
rapidly by lowering the magnet, which brought the
sample back into the water-cooled jacket. One
experiment (G-1234) was quenched after only a
total of 30 s had elapsed, whereas G-608 was
quenched only after 120 s had elapsed.

[15] After being quenched, each capsule was
removed from its pressure vessel, checked that it
had remained sealed, and then the sample was
removed and sectioned for analysis. The number
density of bubbles, Nm,obs, that nucleated was

determined by selecting 4–5 areas (40 "m $
40 "m) of a sample and counting all bubbles that
appear as the field of view is moved through the
sample using the focusing knob of the microscope.
If bubbles had a shape indicative of two bubbles
quenched in the act of merging, then we counted
the two separately. The depth viewed was usually
between 800 "m and 2000 "m, and measured
using a Heidenhain focus drive linear encoder.
The average error is 6 0.6 "m, determined by
repeatedly focusing through a sample. In two
cases, bubbles were too numerous to count indi-
vidually. In those cases, number densities were
calculated from porosity and bubble sizes in the
experiments, modified from Gardner et al. [1999]

Nm ¼
#Ntot

1" #ð Þ
X

niVið Þ
; ð1Þ

in which ni and Vi are the number and volume of
bubbles of diameter i, respectively, Ntot is the total
number of bubbles measured, and # is the volume
fraction of bubbles.

[16] All hydration samples were analyzed for dis-
solved water contents by Fourier transform infra-
red (FTIR) spectroscopy, using a Thermo Electron
Nicolet 6700 spectrometer and Continuum IR
microscope. Three to six spectra were collected,
with each spectrum consisting of 60 scans at a
resolution of 4 cm"1, and measured in transmit-
tance mode in the near-IR region (7800–4000
cm"1) with white light and a CaF2 beamsplitter.
Contents of molecular water (H2Om) and hydroxyl
water (OH") were determined from absorbances at
( 5250 cm"1 and ( 4500 cm"1, respectively,
using the model of Zhang et al. [1997], and the
thickness where each spectrum was collected
measured with the method described above. Water
contents reported are the averaged sums of H2Om

and OH" contents (Table 1). Water contents in
one decompression sample were measured at vari-
ous positions through the sample.

2.2. Experimental Results

[17] All hydrations produced crystal- and bubble-
free glasses. Samples that were hydrated at 120–
210 MPa, producing initial water contents that
range from 4.2 to 5.7 wt.% (Table 1). At a given
pressure, H2O contents differ by only a few per-
cent and agree well with those predicted by the
solubility models of Gardner et al. [1999] and Liu
et al. [2005], with an average difference of <2%
between measured and model amounts. All
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decompressed samples contained numerous small
‘‘fringe’’ bubbles at or very near the contact of the
sample with the capsule wall, which result from
heterogeneous nucleation along the contact
[Mangan and Sisson, 2000]. We ignore those and
measured only bubbles that nucleated in the interi-
ors for our analysis. Because bubble nucleation
depends on the degree of supersaturation, which is
quantified as the difference between saturation
pressure and actual pressure, we must calculate the
saturation pressure, psat, of each sample. It is equal
to the pressure at which the melt is saturated with
the measured concentration of H2O, according to
the solubility model of Liu et al. [2005]. Similarly,
we used the model of Liu et al. [2005] to estimate
H2O contents expected at final pressures, pf. Water
contents were measured in one decompressed sam-
ple that did not nucleate bubbles and found to
match those of the hydrated sample used. We con-
clude that no water diffused out of the samples
during the 60 s at low pressure.

[18] Final pressures, pf, ranged from 8.5 MPa to
100 MPa (Table 1). Decompression rates
ranged between approximately 4 MPa s"1 and 32
MPa s"1 (Figure 1) and are defined as the differ-
ence between initial and final pressures divided by
the time required to reach final pressure after the
onset of decompression. Within the range of
examined decompression rates, there was no sig-
nificant correlation between decompression rate
and whether bubbles nucleated or not during a
given experiment. Similarly, whether bubbles
nucleated did not significantly depend on psat, but
rather appears to first-order dependent on the dif-

ference between psat and pf (Figures 1 and 2), with
no bubbles nucleating at approximately
(psat"pf)< 100 MPa during a time interval of 60 s.
The requirement of such large supersaturations to
trigger bubble nucleation further argues that nucle-
ation is homogeneous.

[19] The range of initial water contents used for
our experiments was within the range of pre-
eruptive water contents of many natural rhyolites
[e.g., Wallace, 2005, and references therein],
which is considerably lower than those used in
some previous decompression-nucleation experi-
ments of rhyolitic melts [e.g., Mourtada-Bonnefoi
and Laporte, 2004; Hamada et al., 2010]. In con-
trast to these previous experiments, the number
density of homogeneously nucleated bubbles, Nm,
spanned a wider range, from approximately
108 m"3 to 1014 m"3, and to first order depends on
the degree of supersaturation (psat"pf), as shown
in Figure 3. We speculate that such a dependence
was not found in previous experiments [e.g.,
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pressure, pf, as a function of decompression rate, dp/dt. The
threshold between homogeneous bubble nucleation (solid
symbols) and no nucleation (open symbols) approximately
correlates with psat"pf, as indicated by the dashed line.

100 125 150 175 200
50

75

100

125

150

175

p
sat

 (MPa)

p sa
t−p

f (
M

P
a)

Figure 2. Difference of saturation pressure, psat, and final
pressure, pf, as a function of pf. The threshold between homo-
geneous bubble nucleation (solid symbols) and no nucleation
(open symbols) approximately correlates with psat"pf, as indi-
cated by the dashed line. Symbols are the same as in Figure 1.

100 120 140 160 180 200
7

8

9

10

11

12

13

14

15

p
sat

−p
f
 (MPa)

N
m

,o
bs

 (
m

−3
)

Figure 3. Bubble number density, Nm, as a function of
supersaturation pressure, psat"pf, indicating the Nm is to first-
order dependent on psat"pf. Symbols are the same as in Figure
1.

GONNERMANN AND GARDNER: NONCLASSICAL NUCLEATION THEORY 10.1002/ggge.20281

4763



Mourtada-Bonnefoi and Laporte, 2004; Hamada
et al., 2010] because of the higher and more nar-
row range of initial water contents used.

3. Nucleation Theory

3.1. Classical Theory of Stationary
Nucleation

[20] The spontaneous formation of molecular clus-
ters is associated with a decrease in free energy,
resulting from cluster formation and an increase in
free energy, caused by the creation of an interface
between the nucleus and the metastable liquid
phase. The sum of these changes in free energy
has a maximum at a critical cluster size, above
which the addition of new molecules to the cluster
is energetically favorable.

[21] In classical nucleation theory, the spontane-
ous rate of cluster formation of critical size is
based on an assumed steady state, obtained from
the dimensionless Zeldovitch factor, Z, and the
frequency, !, of formation of nuclei, is larger than
the critical size [e.g., Hirth et al., 1970; Hurwitz
and Navon, 1994; Debenedetti, 1996; Mourtada-
Bonnefoi and Laporte, 2002]. They are given by

Z ¼ !L pb " pð Þ2

8$!3=2
ffiffiffiffiffiffiffiffi
kBT
p ð2Þ

and

! ¼ 16$!2n0D

a0 pb " pð Þ2
; ð3Þ

where !L is the molecular volume of water, kB ¼
1:38$ 10"23J K"1 is the Boltzmann constant and
T is an absolute temperature. n0 is the number of
water molecules per unit volume, a0 ( n0ð Þ"1=3 is
the distance between molecule centers, and ! is
the interfacial tension between bubble nucleus and
melt phase, assumed to be a constant and equal to
the value at equilibrium conditions, !1.

[22] The supersaturation pressure (pb"p) describes
the degree of disequilibrium, where pb is the inter-
nal pressure of the critical nucleus and p is the am-
bient pressure of the melt phase. In general, pb

will be smaller than the saturation pressure of the
melt, psat, and can be calculated from [Debene-
detti, 1996; Cluzel et al., 2008]

G pb; Tð Þ pb ¼ G psat ; Tð Þ psat e! p"psatð Þ=kBT ; ð4Þ

where G(pb, T) and G(psat, T) are the fugacity coef-
ficients of the volatile phase at the specified pres-
sure and temperature.

[23] Based on the above definitions, the stationary
nucleation rate, based on the classical theory, can
be written as [Hirth et al., 1970; Hurwitz and
Navon, 1994; Mourtada-Bonnefoi and Laporte,
2002]

Jcls ¼ Ae"Wcl =kBT : ð5Þ

[24] Here, Wcl is the classical work of nucleus for-
mation, first derived by Gibbs [1961]. The coeffi-
cient, A, is defined as

A ¼ 2!n2
0D

a0

ffiffiffiffiffiffiffiffi
!1
kBT

r
; ð6Þ

where in our case D is the diffusivity of H2O in
the metastable melt phase.

[25] Wcl depends on a single unknown quantity,
the surface tension between bubble nucleus and
melt phase, and is given by

Wcl ¼
16$!3

1

3 pb " pð Þ2
: ð7Þ

[26] It is important to note that in this definition
surface tension between bubble nucleus and melt
phase is considered equivalent to the macroscopi-
cally measurable interfacial tension between the
magmatic vapor phase and the melt phase, !1,
where the subscript 1 denotes an interface of
large radius of curvature, compared to a critical
nucleus.

3.2. Nonstationary Nucleation
3.2.1. Nucleation Time Lag
[27] The finite time required for nucleation to
reach steady state can be characterized by % l, the
nucleation time lag [e.g., Debenedetti, 1996;
Kashchiev, 2000; Mourtada-Bonnefoi and
Laporte, 2002]. The value of % l can be calculated
as

% l ¼
4

$3!Z2
: ð8Þ

[28] The nonstationary nucleation rate, Jclt (t), is
given by [Debenedetti, 1996]
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Jclt tð Þ ¼ Jcls 1" exp "t=% lð Þ½ *; ð9Þ

where t is the time. An alternate formulation yield-
ing similar results is given by Kashchiev [2000] as

Jclt tð Þ ¼ Jcls 1þ 2
X1

i¼1

"1ð Þiexp "i2t=% l

" #
" #

: ð10Þ

[29] For hydrated rhyolitic melt % l , 10"6 s imply-
ing that steady state is reached after <10 % l ,
10"5 s. Consequently, Jclt ( Jcls is a valid approxi-
mation and we shall use Jcl as the classical nuclea-
tion rate throughout the remainder of this
discussion, in lieu of Jclt or Jcls.

3.2.2. Induction Time
[30] The induction time, % i, also referred to as
induction period, is the time that elapses until an
appreciable number of bubbles are experimentally
observable [Kashchiev, 2000]. A practical estimate
of % i is [Kashchiev, 2000]

% i ¼ bi;m% l þ
1

JV
; ð11Þ

where bi,m ( 1,V is the volume of the system and J
is the actual nucleation rate. For small values of % l,
as is the case here,

% i (
1

JV
: ð12Þ

[31] As discussed in section 2, a subset of experi-
ments had induction times that were greater than
the duration of the experiment and did not nucleate
bubbles (Table 1).

3.3. Nonclassical Theory for
Thermodynamically Consistent Work of
Nucleus Formation

[32] The classical nucleation work, Wcl, is in prin-
ciple valid for all possible values of thermody-
namic parameters of the metastable phase, that is
density fluctuations and nucleus size. The value of
!, however, is usually only measurable for macro-
scopic conditions, where its value is expected to
be larger than the surface tension associated with a
critical cluster [Kashchiev, 2003, 2004], for which
the interface is thought to be diffuse instead of
sharp. To overcome this limitation, Kashchiev
[2003, 2004] derived a higher-order approximation
of the nucleation work, Wnc, that permits the use
of the macroscopic value of !, but is, nevertheless,
valid across the whole range of nucleus sizes.

[33] Kashchiev’s formulation for the stationary
nonclassical nucleation rate is

Jnc ¼ Ae"Wnc =kBT : ð13Þ

[34] It is based on the ratio of the nonclassical
nucleation work to the classical value and is given
by the approximation

Wnc

Wcl
( 1" &2: ð14Þ

[35] Here, Wnc is defined as

Wnc ¼
16$!3

nc

3 pb " pð Þ2
ð15Þ

and & is defined as the normalized supersaturation
pressure

& ¼ pb " p
Dp#

¼ Dps

Dp#
: ð16Þ

[36] Dp# is a reference pressure, conventionally
taken as the difference between pb and the pres-
sure at the spinodal, assuming it exists. This for-
mulation is thermodynamically consistent in the
sense that the classical value of Wnc is recovered
at & ! 0, whereas the nucleation energy vanishes
at & ! 1. The corresponding value of !nc is given
by

!nc ¼ !1 1" &2
" #1=3

: ð17Þ

4. Modeling Approach

[37] During each experiment, the hydrated melt
was decompressed at an almost constant tempera-
ture, T, from the initial pressure, pinitial at time
t¼ 0, to the final pressure, p¼ pfinal at time
t¼ %dec. During the time interval 0- t- %dec, the
supersaturation pressure, Dps, steadily increased,
unless the characteristic time scale of water diffu-
sion into growing bubbles [e.g., Lensky et al.,
2004; Gonnermann and Manga, 2007] became
shorter than the characteristic decompression time
before t¼ %dec was reached. After decompression,
the sample was held at p¼ pfinal for a duration of
%final"%dec, at which time the sample was abruptly
quenched. For all experiments 3- %dec- 35 s and
%final was either 30, 60, or 120 s (Table 1).
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[38] We model bubble nucleation over the entire
time interval 0- t- %final. In some experiments,
and model simulations thereof, the nucleation
work, Wnc, was too high and nucleation rates too
low for any bubbles to nucleate within the sample
over the duration of the experiment, that is
%final< % i and Nm¼ 0. For most experiments, how-
ever, nucleation rates were sufficiently high for
bubbles to begin to nucleate after some time and to
continue nucleating until the end of the experiment,
or until volatile diffusion begins to deplete the melt
of H2O supersaturation and nucleation ceases.

[39] Once a bubble has nucleated, H2O diffuses
from the melt into the bubble. Hence, the concen-
tration of H2O in the melt will no longer be uni-
form throughout the melt volume (Figure 4).
Consequently, both bubble nucleation and growth
need to be modeled in order to estimate the degree
of volatile supersaturation throughout the melt vol-
ume, which in turn affects the rate of bubble
nucleation. We will first summarize the methodol-
ogy for bubble growth modeling in section 4.1 and
subsequently discuss the approach to modeling of
bubble nucleation in section 4.2.

4.1. Modeling Bubble Growth

[40] We assume that the size of the critical bubble
nucleus can be derived from the Laplace relation,
which describes the mechanical equilibrium condi-
tion for a bubble

pg " p ¼ 2!1
R

; ð18Þ

where pg is the pressure inside the bubble and R its
radius. The critical bubble radius, Rc, that satisfies

equation (18) is given by [e.g., Proussevitch et al.,
1993]

Rc ¼
2!1
Dps

: ð19Þ

[41] Typically, Rc is of the order of 1–10 nm and if
R<Rc, the bubble will shrink and disappear.
Because the value of !nc is not known a priori, we
use !1 instead of !nc in equation (19). The differ-
ence between the two values is at most a factor of
two and, as already discussed in Gonnermann and
Houghton [2012], small variations in surface ten-
sion do not sufficiently affect the diffusive bubble
growth calculations.

[42] Bubble growth is a consequence of the vol-
ume expansion of the already exsolved H2O vapor
and the diffusion of H2O from the melt into exist-
ing bubbles. The latter typically accounts for about
99.90–99.99% of the final bubble volume, with
final bubble radii typically of the order of
10"5"10"4 m. The mass flux of H2O into each
bubble is determined by the concentration gradient
in the melt at the melt-vapor interface, that is at
radius r¼R. It is calculated as

q ¼ D
@c
@r

$ %

r¼R

: ð20Þ

[43] The diffusivity of H2O within rhyolite melt,
D, is based on the formulation of Ni and Zhang
[2008]. The value of q is calculated from a diffu-
sion model for bubble growth [e.g., Amon and
Denson, 1984; Arefmanesh and Advani, 1991;
Proussevitch et al., 1993], wherein bubbles are
assumed to be spatially distributed, such that each
bubble can be approximated as a sphere

r
R

1 2 3

H2O concentration

b

S

∆p
s

1 2 3

a

(1) bubble

(2) somewhat saturated melt

(3) fully saturated melt

Figure 4. (a) Schematic representation of the modeled melt volume [Kedrinskiy, 2009]. (1) represents the
bubble; (2) the diffusion envelope that is the part of the melt where volatile concentrations and correspond-
ingly nucleation rates are low; and (3) is the nucleation region. During most of the modeling, the volume frac-
tion of melt comprised by region (3) is close to a value of 1. (b) Schematic graph of volatile concentration in
the melt as a function of radial distance, r, where R is the bubble radius and S is the radius of the surrounding
melt shell. The difference between the saturation pressure at the actual volatile concentration (solid red curve)
and the equilibrium concentration at the pressure inside a bubble nucleus is the supersaturation pressure.
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surrounded by a spherical melt shell of thickness
S"R (Figure 4). Because of the spherical symme-
try inherent in this approximation, volatile diffu-
sion simplifies to

@c
@t
þ vr

@c
@r
¼ 1

r2

@c
@r

Dr2 @c
@r

$ %
; ð21Þ

where vr¼ dR/dt is the radial velocity of melt at
r¼R. Equation (21) is solved using an implicit
finite difference scheme, employing a Lagrangian
frame of reference, a nonuniform grid
[Arefmanesh and Advani, 1991; Proussevitch
et al., 1993] and a Neumann boundary condition at
r¼ S, given by

@c
@r

$ %

r¼S

¼ 0: ð22Þ

[44] Mass conservation of H2O requires that

d
dt

'gR3
& '

¼ 4R2'mq; ð23Þ

where 'm is the melt density and the density of the
exsolved gas phase, denoted as 'g, depends on pg

via an equation of state. Here, we use the modified
Redlich-Kwong equation of state of Kerrick and
Jacobs [1981].

[45] Bubble growth is resisted by viscous and cap-
illary stresses, which are balanced by the pressure
difference between the gas mixture inside the bub-
ble and the surrounding melt

pg tð Þ " p tð Þ ¼ 2!1
R
þ 4(e

1
R

dR
dt
: ð24Þ

[46] The effective viscosity, (e, accounts for the
radially variable, H2O-dependent Newtonian vis-
cosity of the melt [Lensky et al., 2001; Hui and
Zhang, 2007].

[47] Bubble growth for a representative bubble,
nucleated at time ti, is calculated for the time
interval ti - t - tfinalð Þ. At each bubble-growth
time step the coupled equations (21), (23), and
(24) are solved iteratively until convergence of
pg, similar to the methodology described in
Proussevitch et al. [1993]. This results in the
required data arrays ci;k and vi;k , which are sub-
sequently used during the calculation of bubble
nucleation, in order to estimate the degree of
supersaturation throughout the modeled melt
volume.

4.2. Modeling Bubble Nucleation

[48] We calculate the number of bubbles that nu-
cleate during the time interval ti - t - ti þ Dt and
within a given subvolume of melt, vi,k, as

ni;k ¼ vi;k Jnc i; kð ÞDt: ð25Þ

[49] Here ti¼ iDt and Jnc(i,k) is calculated from
equation (13) for the average concentration of
H2O at time tiþDt/2 and within the subvolume of
melt denoted by the subscript k¼ 1 . . . m. The
value of Jnc(i,k) depends on the pressure p at time
tiþDt/2, as well as on the average H2O concentra-
tion at that time and within the given subvolume
of melt vi,k. Here, the spatio-temporal distribution
of H2O concentration is, as already discussed in
section 4.1, obtained from the diffusive bubble
growth calculations. The total volume of bubbles
at time tiþDt/2 within the entire melt volume is
then calculated as

Nm tið Þ ¼
Xi

j¼1

Xm

k¼1

nj;k

 !

: ð26Þ

[50] The value of !nc(ti) required for the calcula-
tion of Jnc is calculated from equation (17), which
is based on contact angle measurements of !1 for
haplogranitic melt by Bagdassarov et al. [2000],
albeit extrapolated to the temperature of our
experiments using d!=dT ¼ 7:5$ 10"5Nm"1

!
C"1

[Bagdassarov et al., 2000]. The resultant values of
!1 for both the contact angle measurements and
our experiments are shown in Figure 5.
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Bagdassarov et al. (2000)

Figure 5. The value of !1 used to calculate Wcl (equation
(7)). The value of !1 is based on a fit of measured surface
tension values of haplogranitic melt at 1000!C, adjusted to the
corresponding temperatures of 825!C, 850!C, and 875!C
[Bagdassarov et al., 2000], using d!=dT ¼ 7:5$
10"5Nm"1 !

C"1 [Bagdassarov et al., 2000]. Solid squares are
the measured values of Bagdassarov et al. [2000] adjusted to
850!C, all other symbols are the same as in Figure 1.
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5. Results and Discussion

[51] We modeled homogeneous bubble nucleation
in the experiments of section 2 by integrating
equation (26), which requires the calculation of Jnc

and, hence, !nc. The latter is estimated from equa-
tion (17), wherein the value Dp# is not known a
priori. For each experiment, we therefore repeated
the entire analysis over a range of Dp#, with the
objective of finding a value for Dp#, that mini-
mizes the difference between observed and pre-
dicted bubble number densities. The match
between observed and calculated values of Nm is
quantified as a misfit, 0-)- 1, which is defined
as

) ¼ jNm;pred =Nm;obs " 1jfor Nm;pred < Nm;obs ; ð27aÞ

) ¼ jNm;obs =Nm;pred " 1jfor Nm;pred . Nm;obs : ð27bÞ

[52] For each experiment, the value of ), as a
function of Dp#, is shown in Figure 6. For all cases
a unique and well-defined minimum identifies the
value of Dp# at which )/ 0:01 and Nm,pred (
Nm,obs. For experiments where Nm,obs is small, rel-
atively modest changes in Dp# result in a large
change in Nm,pred, relative to Nm,obs. Consequently,
) has a narrow minimum. In contrast, for larger
values of Nm,obs there is a broader minimum in ),
because at a given change in Dp# the change in
Nm,pred, relative to Nm,obs, is smaller.

[53] Two contrasting examples of combined bub-
ble nucleation and growth modeling are shown in
Figure 7. In the case of G-1112, nucleation rates
and resulting bubble number densities were too
low for water diffusion into existing bubbles to
significantly affect the supersaturation of most of
the sample. Consequently, most of the sample
remained fully saturated (e.g., Figure 4) and bub-
bles nucleated until the sample was quenched after
60 s. In contrast, for G-1233 nucleation rates and
resulting bubble number densities were high.
Water diffused into existing bubbles from the
entire melt volume within a short time after the
onset of nucleation and, consequently, there was
only a short burst of nucleation, albeit at high
rates. These two examples illustrate the critical
importance to accurately model diffusive bubble
growth, in order to accurately calculate the change
in bubble nucleation rate, J, throughout the
experiment.

[54] During modeling the value of Wcl is calcu-
lated from equation (7), with !1 based on the

work of Bagdassarov et al. [2000] and using the
maximum value of Dps attained during the experi-
ment. The value of the nonclassical nucleation
work, Wnc, is calculated from equation (14), at the
time-dependent value of Dps and the value of Dp#

where ) has its minimum. The resultant values of
Wnc/Wcl, as a function of &¼Dps/Dp#, are shown
in Figure 8, which demonstrates that the nuclea-
tion work for homogeneous bubble nucleation in
rhyolitic melt is significantly lower than would be
predicted from CNT. Estimates of Wnc/Wcl are
based on the formulation of Kashchiev [2003,
2004] and represent the fractional reduction in
nucleation work, resulting from the diffuse
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Figure 6. Fit of calculated to observed bubble number den-
sity as a function of Dp#. Each experiment is plotted at its
maximum value of Dps. For each experiment, the match
between observed and calculated values of Nm is quantified as
a misfit, 0-)- 1, as defined in equations (27a) and (27b).
For each experiment, the value of )¼ 1 is plotted as a func-
tion of Dp# (abscissa) at the maximum value of Dps (ordinate)
for the given experiment. Thus, the value of Dps is constant
for each experiment. The apparent variation in Dps for each
experiment represents the variation in ), which is also indi-
cated by the color of the plotted curve, as indicated by the
color bar. Only experiments that nucleated bubbles are shown.
Note that experiments G-938 and G-1112 have the same value
of Dps and are shifted slightly upward and downward, respec-
tively, to distinguish them.
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interface between bubble nuclei and surrounding
melt phase and ensuing dependence of surface
tension on the degree of supersaturation, also
observed in other types polymer melts [Guo
et al., 2012]. Although it remains to be shown
theoretically what precise functional form a
nonclassical formulation for nucleation work in
silicate melts should have, the approach is in
principle valid for one component and multi-
component liquids [Kashchiev, 2004].

[55] Figure 9 shows that for all experiments in
which bubbles nucleated, the dimensionless nucle-
ation work, Wnc/kBT, depends on Dps and falls
approximately along the empirical trend

Wnc =kBT ¼ 67:5" e Dps=84:5MPað Þ6 : ð28Þ

[56] We note that this trend is purely empirical
and has no theoretical basis. It is, nevertheless,
distinctly different from the trend predicted by
classical nucleation theory. For Dps approximately
<95 MPa the dimensionless nucleation work is
almost constant, decreasing only slightly as super-
saturation increases. This is a consequence of the
dependence of Wnc on !3

nc =Dp2
s (equation 15) and

the concurrent increase of !nc and Dps, as shown
in Figure 11. The resultant nucleation rates are
almost constant, which is shown in Figure 12. In
contrast, CNT would predict large increases in
nucleation rate (Figure 9) under the same condi-
tions [e.g., Mangan and Sisson, 2005]. The trend
obtained from our experiments reverses, however,
for Dps approximately >95 MPa, because !nc

decreases with further increase in Dps. This
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Figure 7. Two illustrative example results from the com-
bined bubble nucleation and growth modeling. Shown are
samples G-1112 and G-1233 (see Table 1 for experimental
conditions). (a) Modeled pressure, p, as a function of time. (b)
Predicted nucleation rate, J, as a function of time. (c) Pre-
dicted bubble number density, Nm,pred, as a function of time.
At the end of the experiment Nm,pred matches the observed
value, Nm,obs. The lowest value of Nm,pred corresponds to one
bubble per volume of sample.
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increase in nucleation rate with supersaturation is
larger than would be predicted by CNT (Figure 9),
presumably because of CNT’s assumption of a
constant surface tension. One may speculate
whether this rapid increase in nucleation rate,
compared to CNT, might relax the high decom-
pression rates required by CNT, in order to pro-
duce bubble number densities 01014m"13

[Toramaru, 2006].

[57] As shown in Figure 10, the empirical fit of
equation (28) is able to predict bubble number
densities, Nm,pred, to within approximately one
order of magnitude of the observed value, Nm,obs,
across six orders of magnitude. We also find that
the value of !nc is always lower than !1 (Figure
11). This dependence of !nc and, hence, Wnc/kBT
on the degree of supersaturation, Dps, is consistent
with the work of Kashchiev [2003, 2004]. More-
over, the maximum values of Wnc/kBT at which
nucleation is observed are similar to those

obtained from other nucleation experiments [e.g.,
Kelton and Greer, 2010, and references therein].

6. Conclusions

[58] As a result of our integrated study of homoge-
neous bubble nucleation during decompression
experiments of hydrous rhyolitic melt and numeri-
cal modeling based on nonclassical nucleation
theory, we find that the surface tension between
critical bubble nuclei and surrounding melt is
smaller than the macroscopically measurable sur-
face tension. This is consistent with a diffuse inter-
face between the nucleating phase and the
surrounding metastable liquid, resulting in a
dependence of surface tension on the degree of
supersaturation. Our results explain the discrep-
ancy between surface tension estimates from bub-
ble nucleation experiments and macroscopic
surface tension measurements in silicate melts.

[59] We show that the dependence of nucleus sur-
face tension on supersaturation can in principle be
modeled, albeit with the caveat that the difference
between the internal pressure of the bubble
nucleus and the spinodal is not known a priori,
thus introducing an additional parameter. Perhaps
the best way forward will be to obtain an empirical
formulation for the nucleation work, which is in-
dependent of this parameter. For the experiments
analyzed herein such an empirical equation pre-
dicts homogenous bubble nucleation rates for our
experiments to within one order of magnitude of
actual values. At low (high) degrees of

40 50 60 70 80 90 100 110 120
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

∆ p
s
 = p

b
−p

f
 (MPa)

σ nc
 (

N
 m

−1
)

Figure 10. The value of !nc for the results shown in Figure
8. Symbols are the same as in Figure 1, whereas open black
symbols showing the corresponding value of !1, based on the
work of Bagdassarov et al. [2000].

40 60 80 100 120
−2

2

6

10

14

18

∆ p
s
 = p

b
−p

f
 (MPa)

lo
g 10

 J
nc

 (
m

-3
s-1

)

Figure 11. Predicted peak nucleation rates, Jnc, for the
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supersaturation the nucleation work decreases
more gradually (steeply) with increasing supersa-
turation than predicted by classical nucleation
theory. How this departure from the classical
theory affects predictions of bubble nucleation
during explosive volcanic eruptions requires fur-
ther work.
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